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ABSTRACT
Climate teleconnections modulate regional wildfire occurrence. Understanding the underlying mechanisms is critical for sub-
seasonal to annual wildfire predictions since the magnitude of certain teleconnection climate modes (TCMs) intensifies or they 
may undergo phase shifts. Here, we study how TCMs govern wildfire activity and compare the effects of weather and fuels in 
mediating the influence of TCMs on wildfires. Globally, burned area (BA) is predictable by a single TCM in 25.4% of the burnable 
(vegetated) regions, with Australia and eastern Siberia identified as the two hot spots with the highest probability out of a total 
of 10. Tropical oceans are the primary sources of teleconnection-driven variability in global BA. Our study finds that in dryland 
hot spots such as Australia, the Horn of Africa, and the northern Middle East, the lagged mediating effects of fuels outweigh 
the immediate mediating effects of weather. Whereas in hot spots with dense vegetation, like northeastern South America and 
Southeast Asia, the immediate mediating effects of weather are generally more dominant. In other hot spots, fuels can still serve 
as a key pathway through which specific TCMs influence wildfire activity. This study highlights the important role of fuels in 
transmitting the delayed impacts of TCMs-induced weather anomalies on regional wildfire activity. This study also underlines 
the importance of refining fuel management strategies and integrating fuel conditions in teleconnection-related wildfire attribu-
tion and prediction frameworks, which is crucial given the projected changing patterns of teleconnections.

1   |   Introduction

Wildfires are projected to increase in regions and seasons that 
are not usually regarded as fire-prone due to land-use changes 
and drier and warmer conditions under anthropogenic warm-
ing (Andela et al. 2017; Brown et al. 2023; Clarke et al. 2022). 
Drought, deforestation, and forest degradation may disrupt 
natural barriers, enabling wildfires in wet ecosystems (Clarke 
et  al.  2022). In turn, wildfires intensify climate change by 

modulating above- and below-ground carbon storage, sur-
face albedo, greenhouse gases, and aerosols (Page et al. 2002; 
Randerson et  al.  2006; Ward et  al.  2012). Effective fuel and 
wildfire management is essential for conserving ecologi-
cal services, as well as human health and property (Moritz 
et  al.  2014). Climate teleconnections describe significant 
climate responses in a region caused by distant disturbance 
sources (e.g., atmospheric pressure or sea surface tempera-
ture variations) through atmospheric propagation (Cardil 
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et  al.  2023; Zhao et  al.  2022). Some teleconnection climate 
modes (TCMs), e.g., El Niño–Southern Oscillation, modulate 
wildfire preconditions through immediate or lagged effects 
(Cardil et  al.  2023; Wu et  al.  2021). In southeastern Siberia, 
for example, the Arctic Oscillation modulates snowmelt time, 
and thus fuel dryness and wildfire occurrence in spring (Kim 
et al. 2020). Wildfire occurrence increases when high-pressure 
systems resulting from TCMs persist, because the suppressed 
precipitation and increased temperature and solar radiation 
desiccate fuels (Zhao et  al.  2022). TCMs can also alter the 
path and strength of large-scale airflow (e.g., westerlies and 
jet streams), prevent vapor import, and cause droughts (Jain 
and Flannigan 2021). The accuracy and time window of wild-
fire predictions, therefore, can be improved and extended as 
seasonal to interannual forecasts of some TCMs are feasible 
(Ham et al. 2019; Liu et al. 2023; Lu et al. 2022).

Predicting the fate of TCMs under climate change can help proj-
ect future wildfire occurrences. An increase in the magnitude 
of El Niño–Southern Oscillation (Cai et  al.  2023, 2022) and its 
resulting variability of the Tropical North Atlantic pattern 
(Yang et al. 2021) and the Pacific–North American pattern (Cai 
et al. 2021) under anthropogenic warming is projected. In south-
eastern Australia, El Niño usually coincides with heatwaves, 
droughts, and conducive fire weather (Abram et al. 2021). In the 
drylands of Australia, La Niña brings more precipitation, and 
thus more fuels accumulate, potentially increasing the risk of 
wildfires (AFAC 2023; Zhang 2023). Meanwhile, the frequency 
of strong/multi-year La Niña events may increase as they usu-
ally follow strong El Niño events to balance the large heat bud-
get (Cai et al. 2023; Geng et al. 2023). This projected increasing 
magnitude of El Niño–Southern Oscillation, therefore, may 
pose challenges to humanity in managing extreme wildfires. 
Moreover, due to the asymmetrical and faster warming of the 
eastern tropical Pacific, even a mild El Niño can cause consid-
erable atmospheric convection and result in significant climate 
impacts (Cai et al. 2021). In addition to magnitude changes, some 
TCMs may offset the effects of anthropogenic warming or un-
dergo phase shifts that need to be considered in future wildfire 
predictions. For example, wildfire emissions in South America 
are decreasing due to the weakening of the positive phase of 
the Atlantic Multidecadal Oscillation. However, if anthropo-
genic warming continues to intensify, this decreasing trend may 
be overturned (Wang and Huang 2022). In recent decades, the 
Antarctic Oscillation has tended to be in its positive phase be-
cause of anthropogenic warming and stratospheric ozone deple-
tion (Arblaster and Meehl 2006; Thompson et al. 2011). However, 
the Montreal Protocol successfully stabilized the Antarctic ozone 
depletion, weakening the positive tendency of the Antarctic 
Oscillation (Banerjee et  al.  2020), which may exacerbate wild-
fires in Australia in the future (Abram et al. 2021).

Here, we explore the variables that mediate the relationships 
between TCMs and wildfires, considering both weather (top-
down) and fuels (bottom-up) as mediators. The relationships 
between TCMs and wildfires, as well as the corresponding 
physical mechanisms, have been studied regionally and globally 
(Cardil et al. 2023; Chen, Morton, et al. 2016; Le et al. 2022; Zhao 
et al. 2022). However, these studies did not provide a comprehen-
sive analysis of the underlying pathways or focused solely on the 
weather variabilities induced by TCMs and did not account for 

the role of fuels, which also play an important role in wildfire ac-
tivities (Qu et al. 2023). The pathways between TCMs and wild-
fires, that is, via weather or fuel mediators, are yet unclear. In 
this study, we aim to answer three main questions: (a) where are 
the hot spots in which wildfires are highly predictable by TCMs? 
(b) how do TCMs influence global and regional wildfires? (c) 
what are the dominant mediators between TCMs and wildfires, 
weather or fuels? We underline the important role of fuel medi-
ators in linking TCMs and wildfires, especially in dryland hot 
spots, and provide a unique pathway analysis framework to dis-
entangle the influence of TCMs on wildfires from other drivers. It 
enables us to refine fuel management strategies, improve wildfire 
attribution and prediction frameworks, and better prepare for po-
tentially high-risk fire seasons induced by TCMs.

2   |   Materials and Methods

2.1   |   Wildfire and Mediator Data

Burned area (BA) used to characterize fire behavior was obtained 
from MCD64A1 v061 (Giglio et al. 2021) at 500 m spatial resolution 
and daily temporal resolution. Fire radiative power (FRP) com-
plements the spatial information provided by BA by measuring 
fire intensity via the energy released during active burning. FRP 
was obtained from MYD14A1 v061 (Giglio and Justice 2021) at 
1 km spatial resolution and daily temporal resolution. Additional 
information regarding the processing of FRP is available in the 
Supporting Information. The mediators used were classified as 
weather (top-down) and fuel (bottom-up) mediators based on a 
previous study (Qu et  al.  2023). Weather mediators include the 
maximum 2 m air temperature (Tmax), potential evaporation 
(ET0), vapor pressure deficit (VPD), and 10 m wind speed (Wind). 
The fuel mediators include normalized difference vegetation 
index (NDVI), enhanced vegetation index (EVI), fraction of pho-
tosynthetically active radiation (FPAR), and 0–7 cm soil moisture 
(SM). Tmax, ET0, Wind, and SM were acquired from ECMWF 
Reanalysis v5 (ERA5) monthly averaged data on single levels 
(Hersbach et al. 2023) with a spatial resolution of 0.25°. VPD was 
calculated based on the minimum and maximum 2 m air tempera-
tures and dewpoint temperature from ERA5. The calculation of 
VPD can be found in the Supporting Information. NDVI and EVI 
were obtained from monthly MOD13C2 v061 (Didan 2021) with a 
spatial resolution of 0.05°. FPAR was acquired from MCD15A3H 
v061 (Myneni et al. 2021) with a spatial resolution of 500 m and a 
temporal resolution of 4 days. All the datasets span from 2003 to 
2024. They were resampled to 1° spatial resolution and monthly 
temporal resolution by averaging (for the mediators), aggregating 
(for BA), and calculating the 95th percentile (for FRP). For sim-
plicity, we used BA as an example to illustrate the methodology in 
the following part of this section.

2.2   |   Teleconnection Climate Mode Data

In this study, 11 teleconnection climate modes (TCMs) were in-
volved, including:

Arctic Oscillation (AO): AO, also known as the Northern 
Annular Mode (NAM), is characterized by the sea-level atmo-
spheric pressure difference between the Arctic and Northern 
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Hemisphere mid-latitudes (37°–45° N), describing the north–
south shift of the storm-steering and mid-latitude jet stream 
(Thompson and Wallace 1998).

Polar/Eurasia pattern (POL): POL describes the changes in the 
strength of the atmospheric circulation centered in the north 
pole and corresponding changes in the midlatitude circulation 
over Eurasia (Barnston and Livezey 1987).

North Atlantic Oscillation (NAO): NAO is characterized by the 
sea-level atmospheric pressure difference between the Icelandic 
Low and the Azores High, influencing the strength of the 
Atlantic jet stream and the location of the storm track (Jones 
et al. 1997).

East Atlantic/West Russia Pattern (EAWR): EAWR describes 
a dipole of atmospheric pressure over western Europe and 
western Russia, with four pressure anomaly centers over west-
ern Europe, northern China, northern Atlantic, and northern 
Caspian Sea (Barnston and Livezey 1987).

Tropical North Atlantic pattern (TNA): TNA is defined as the 
average sea surface temperature anomalies in regions located in 
5.5°–23.5° N and 15°–57.5° W, influencing the north–south shift 
of the Intertropical Convergence Zone (ITCZ) and strength of 
northeasterly trade winds (Enfield et al. 1999).

Tropical South Atlantic pattern (TSA): Like the TNA but for the 
regions located in 30° W–10° E and 0°–20° S (Enfield et al. 1999).

Indian Ocean Dipole (IOD): IOD describes the sea surface 
temperature difference between the western Indian Ocean 
(50°–70° E, 10° S–10° N) and the southeastern Indian Ocean 
(90°–110° E, 0°–10° S) (Saji et al. 1999).

El Niño Southern Oscillation (ENSO): ENSO is one of the most 
important natural drivers of global climate variability, describ-
ing the oscillating warm and cold sea surface temperature 
anomalies in the central and eastern tropical Pacific (McPhaden 
et al. 2006). The Niño 3.4 sea surface temperature index, which 
is defined by the average sea surface temperature anomalies in 
regions located in 5° S–5° N and 120°–170° W, was used.

Pacific–North American pattern (PNA): PNA is characterized 
by the atmospheric pressure difference between the North 
Pacific and the North American continent, influencing the 
strength and location of the East Asian jet stream (Barnston and 
Livezey 1987). Four atmospheric pressure anomaly centers are 
located around Hawaii, the mountain region of western North 
America, south of Alaska, and the southeastern United States.

Western Pacific pattern (WP): WP is characterized by the di-
pole atmospheric pressure pattern over the North Pacific, with 
one anomaly center over the Kamchatka Peninsula and another 
anomaly center over southeastern Asia and the western subtrop-
ical North Pacific, describing the intensity and meridional shifts 
of the East Asian jet stream (Mo and Livezey 1986; Wallace and 
Gutzler 1981).

Antarctic Oscillation (AAO): AAO, also known as the Southern 
Annular Mode (SAM), is characterized by the sea-level 

atmospheric pressure difference between the Antarctic regions 
and the Southern Hemisphere mid-latitudes (40°–50° S), de-
scribing the north–south shift of the Southern Westerlies (Gong 
and Wang 1999).

The indices for these TCMs were obtained from the Koninklijk 
Nederlands Meteorologisch Instituut (KNMI) Climate Explorer 
(http://​clime​xp.​knmi.​nl/​) and the National Oceanic and 
Atmospheric Administration Physical Sciences Laboratory 
(NOAA PSL, https://​psl.​noaa.​gov/​), spanning from 2003 to 2024 
at a monthly temporal resolution.

2.3   |   Time Series Processing

To study the influence of TCMs on BA, we first determined 
the fire season peak in each 1° grid cell to avoid the influence 
of the weak correlations between TCMs and non-fire season 
low BA. The fire season peak was defined as the three con-
secutive months with the highest accumulated BA, which was 
aligned with a previous study (Cardil et al. 2023). To detect the 
immediate and lagged effects of TCMs on BA (Cardil et al. 2023) 
and corresponding pathways (TCMs→mediators→BA), we in-
troduced time lags into TCMs and mediators by switching their 
time series 0–24 steps (months) backward. The maximum time 
lag was set as 24 months, considering that the fuel buildup pro-
cess may take 1–2 years (Qu et al. 2023). Since we focus on the 
influence of TCMs and mediators on BA, a wildfire event can 
only coincide with or follow (but not precede) TCMs and medi-
ators, reflecting the causality direction. Subsequent regressions 
and correlation analyses were conducted based on the fire sea-
son peak BA and time-lagged TCMs and mediators. To mini-
mize the influence of long-term trends and seasonal cycles, we 
first removed linear trends from TCMs, mediators, and BA over 
the entire period using linear regression. We then calculated 
anomalies in mediators and BA by subtracting the long-term 
means of the corresponding month.

2.4   |   Partial Least Squares Regression

Partial least squares regression (PLSR) was applied to each 
grid cell globally with time-lagged (0–24 months) TCM as 
the independent variables and BA as the dependent variable. 
PLSR brings the advantages of principal component analysis 
to ordinary least squares regression. Instead of applying re-
gression on the original variables, PLSR projects the indepen-
dent and dependent variables to a smaller set of uncorrelated 
components that account for as much covariance as possible. 
The corresponding equations are presented in Equations  (1) 
and (2).

where Xj is the jth projected component, TCMt is the TCM with a 
time lag of t  (ranging from 0 to 24), wj

t is the weight of TCMt, cj is 

(1)Xj =

24
∑

t = 0

TCMt × w
j
t

(2)BA =

k
∑

j= 1

cj × Xj + �
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the regression coefficient for Xj, and � is the residual. Note that 
both the wj

t and cj are estimated simultaneously to maximize the 
covariance between the projected components and BA.

Because the regression is based on these projected components 
rather than the original variables, compared with other regres-
sion methods such as Lasso or Ridge regression, which are more 
suitable for causal inference, traditional statistical tests (e.g., 
the significance of individual coefficients) become less mean-
ingful for PLSR. Nevertheless, the overall performance of the 
PLSR model can still be effectively evaluated. In this study, we 
assessed its significance through 10-fold cross-validation and by 
estimating the p-value of the F-statistic. To ensure the robust-
ness of the model, we further validated it using a separate test 
set, with 70% of the data allocated for training and 30% for test-
ing. In each grid cell, the BA predictability of an individual TCM 
was expressed as the coefficient of determination (R2) between 
predicted and observed BA from the test set. BA was considered 
predictable when the F-statistic of the PLSR model indicated 
significance at the 0.05 level. More details about why PLSR was 
chosen can be found in the Supporting Information.

2.5   |   Hot Spot Analysis

A hot spot is defined as a geographically clustered group of grid 
cells where the TCM exhibits higher-than-average BA predict-
ability. A hot spot analysis tool in ArcGIS (Spatial Statistics Tools/
Mapping Clusters/Hot Spot Analysis), based on the Getis-Ord Gi* 
statistic (Getis and Ord 1992; Ord and Getis 1995), was used to 
identify hot/cold spots from the BA predictability global pattern. 
We applied hot spot analysis to the global pattern of maximum 
BA predictability, defined as the highest BA predictability from 
TCMs at each grid cell. We also applied the same hot spot analysis 
to the BA predictability of each TCM to determine their respective 
hot spots. More details about the Getis-Ord Gi* statistic hot spot 
analysis can be found in the Supporting Information.

2.6   |   Time Lag Analysis

For all the grid cells within an identified hot spot, the Pearson cor-
relation coefficients between TCMs and BA were calculated over 
a specific time lag range (0–24 months). If the correlation was not 
statistically significant (p > 0.05), the correlation coefficient was 
set to zero. The time lag distribution of a specific TCM within a hot 
spot was then calculated by averaging the absolute values of the 
correlation coefficients from all grid cells within that hot spot and 
across all time lags from 0 to 24 months. To facilitate the compar-
ison across different TCMs and hot spots, we normalized all time 
lag distributions to a 0–1 scale. The positive/negative fraction in 
each time lag is calculated by dividing the sum of the absolute val-
ues of positive/negative correlation coefficients by the sum of the 
absolute values of all correlation coefficients from that time lag.

2.7   |   Pathway Analysis

A three-step ordinary least squares regression procedure was used 
to calculate the contribution of a TCM to BA through a specific me-
diator. In the first regression (Equation 3), we input a time-lagged 

TCM (TCMx,i+j) as the independent variable and BA as the de-
pendent variable. We recorded the coefficient of determination 
between predicted and observed BA as well as the p-value of the 
F-statistic as R2

1
 and p1. We only proceeded with the next two regres-

sions if the first regression was statistically significant (p1 < 0.05).

where x is the TCM index, i  is the time lag between TCM and 
mediator, j is the time lag between mediator and BA, i  + j is 
the time lag between TCM and BA, a1 is the intercept, b1 is the 
regression coefficient, and c1 is the residual. Note that i  and j 
range from 0 to 24, and i  + j should be no more than 24.

In the second regression (Equation 4), we input the same TCM 
with the same time lag (TCMx,i+j) as the independent variable 
and a time-lagged mediator (Mediatory,j) as the dependent vari-
able. We recorded the coefficient of determination between the 
predicted and observed mediator as well as the p-value of the 
F-statistic as R2

2
 and p2.

where y is the mediator index, a2 is the intercept, b2 is the regres-
sion coefficient, and c2 is the residual.

In the third regression (Equation 5), we input the same mediator 
with the same time lag (Mediatory,j) as the independent variable 
and BA as the dependent variable. We recorded the coefficient of 
determination between the predicted and observed BA as well 
as the p-value of the F-statistic as R2

3
 and p3.

where a3 is the intercept, b3 is the regression coefficient, and c3 is 
the residual error.

Then, the pathway contribution of a TCM (TCMx,i+j) to BA through 
a mediator (Mediatory,j) can be calculated from Equation (6) if all 
p1, p2, and p3 are less than 0.05, otherwise, the contribution is set 
as zero.

In each hot spot, we summed all contributions from the same 
TCM through the same mediator and all possible time lags in all 
grid cells. Then, the summed contributions were compared to 
find the dominant mediator and mediator group in that hot spot. 
The justification and assumptions of the pathway analysis can 
be found in the Supporting Information. A detailed flowchart of 
the pathway contribution calculation is provided in Figure S1.

3   |   Results

3.1   |   Climate Teleconnection–Wildfire Hot Spots

Ten hot spots where TCMs show higher-than-average BA pre-
dictability were determined, including northwestern North 
America, northeastern North America, northern Mexico, 

(3)BA = a1 + b1 × TCMx,i+j + c1

(4)Mediatory,j = a2 + b2 × TCMx,i+j + c2

(5)BA = a3 + b3 ×Mediatory,j + c3

(6)Contribution = R2
1
× R2

2
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northeastern South America, the Horn of Africa, northern 
Middle East, western Siberia, eastern Siberia, Southeast Asia, 
and Australia (Figure  1c). Australia and eastern Siberia were 
two large hot spots, accounting for 3.4% and 2.9% of the global 
burnable (vegetated) area (Figure 1d). None of the tropical sa-
vannas with high BA fractions were determined as hot spots 
(Figure  1a,c), probably due to their consistent dry season and 
flammable fine fuels (Chen, Morton, et  al.  2016). Several cold 
spots where TCMs show lower-than-average BA predictability 
were also determined, including the Central United States, the 
southern equatorial region of sub-Saharan Africa, northern and 
southeastern China, and northwestern Indochina.

BA in about 25.4% of global burnable areas was predictable 
by a single TCM (Figure  2a). TNA, TSA, ENSO, and IOD, 
representing the tropical Atlantic, tropical Pacific, and trop-
ical Indian Ocean, were the most important ones according 
to the affected area fraction. The dominance of TNA was 
shown in eastern Siberia, northeastern North America, the 
Horn of Africa, northern Mexico, and the northern Middle 
East, accounting for 27.4%, 25.0%, 41.2%, 35.5%, and 44.8% of 
the burnable area, respectively (Figure  2c). TSA dominated 
in western Siberia, accounting for 48.3% of the burnable 
area there. ENSO showed dominance in northeastern South 
America (27.9%), northwestern North America (27.5%), and 
Southeast Asia (9.7%). IOD dominated in Australia (25.9%) 
and the northern Middle East (44.8%).

The BA prediction performance improved when the top three 
most important TCMs were combined to predict BA (3-TCM 
model), in terms of both the predictable area fraction and pre-
dictability (Figure 3). For many of the hot spots, the predictable 
area fraction obtained from the 3-TCM model can reach or exceed 
40%. The highest fractions were observed in the Horn of Africa 
and western Siberia, with predictable area fractions of 55.9% and 
53.8%, respectively. While Southeast Asia exhibited the lowest 
predictable area fraction (8.3%). The 3-TCM model explained 
approximately 30%–40% of the variance in BA. Compared to 
the 1-TCM model, the greatest improvement in predictability 
was found in eastern Siberia, where the BA explained variance 
increased from 21%–25% to 33%. We also investigated the influ-
ence of TCMs on FRP, a proxy for fire intensity. Nine hot spots 
were identified, largely consistent with those identified in the 
BA analysis, except for the absence of a hot spot in northeastern 
South America and the emergence of a new one in South Africa 
(Figure S4). FRP was found to be predictable by a single TCM in 
approximately 23.4% of global burnable areas (Figure S6). Among 
the 11 TCMs examined, TNA, WP, ENSO, TSA, and IOD emerged 
as the most influential, consistent with the findings from the BA 
analysis. The FRP prediction performance improved with the use 
of the 3-TCM model. In many hot spots, the fraction of burnable 
areas with predictable FRP reached or exceeded 40%, with an ex-
plained variance between 30% and 40% (Figure S7).

3.2   |   Lagged Relationships Between Climate 
Teleconnections and Wildfires

TNA tended to show positive correlations with BA at short 
time lags (0–3 months) in northwestern and northeastern 
North America, and at longer time lags (beyond 12 months) 

in Australia, western Siberia, the Horn of Africa, and north-
ern Mexico (Figure  4). Negative correlations between TNA 
and BA were observed in the northern Middle East at time 
lags of approximately 5–19 months. In northeastern South 
America, TNA and BA exhibited negative correlations at time 
lags of approximately 9 months, and positive correlations at 
time lags of around 0–7 and 24 months. TSA tended to show 
negative correlations with BA at short time lags, like east-
ern Siberia (around 6 months), western Siberia (0–8 months), 
and the Horn of Africa (0–2 months). In northeastern South 
America, TSA was positively correlated with BA at short time 
lags (0–2 months), and negatively correlated at marginally 
longer time lags (3–7 months). NAO was negatively correlated 
with BA in Australia at time lags of approximately 10 and 
19–24 months, and in northern Mexico at time lags of around 
5 and 16 months. In the Horn of Africa, positive correlations 
emerged at time lags of around 3 months, while negative cor-
relations were observed at around 15 and 24 months. In the 
northern Middle East, NAO tended to show negative correla-
tions with BA at shorter lags (less than 10 months) and posi-
tive correlations at longer lags of 10–14 and 22–24 months.

ENSO was positively correlated with BA at short time lags in 
northeastern South America (0–8 months) and Southeast Asia 
(0–4 months). Conversely, ENSO exhibited negative correlations 
with BA in western Siberia at time lags of 19–24 months. In 
northwestern North America, ENSO was positively correlated 
with BA at time lags of 0–2 months, whereas negative correla-
tions emerged at time lags of approximately 14–16 months. WP 
tended to exhibit positive correlations with BA in northwestern 
North America at time lags of 0–2 and 10–12 months, and nega-
tive correlations at time lags of approximately 6 and 19 months. 
In northeastern North America, positive correlations were 
observed at time lags of 0–1 and 9–10 months, while negative 
correlations emerged at longer lags (beyond 12 months). In 
Southeast Asia, WP was positively correlated with BA at time 
lags of around 5 and 24 months, and negatively correlated at 
time lags of 18–19 months.

IOD exhibited positive correlations with BA in eastern Siberia 
at time lags of approximately 9 and 21 months, in Southeast 
Asia around 0–2 months, in northern Mexico at time lags of 
about 13–16 months, and in the northern Middle East at time 
lags of around 1 and 7 months. In contrast, negative correla-
tions were observed in northeastern North America at time 
lags of around 8 and 14 months. In Australia, positive cor-
relations appeared at short lags of approximately 0–3 months, 
while negative correlations emerged at longer time lags of 
around 10–14 months. AO, POL, PNA, and AAO were not 
among the top three most important TCMs in any of the de-
fined hot spot regions. We also examined lagged relation-
ships between TCMs and FRP (Figure  S9), and the patterns 
revealed were largely consistent with those observed in the 
BA analysis.

3.3   |   Mediators Linking Climate Teleconnections 
and Wildfires

The most important finding in this study is the dominant me-
diating effects of fuels in dryland hot spots, that is, Australia, 
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6 of 16 Global Change Biology, 2025

the Horn of Africa, and the northern Middle East, as indicated 
by high VPD and sparse vegetation (Figure 5). In Australia, al-
though the overall mediating effects of weather were generally 

stronger than those of fuels based on the summed contribu-
tions of each group (the sum of all green or brown components 
in Figure 5a) when all 11 TCMs were considered, two of the 

FIGURE 1    |    Global burned area (BA) pattern and hot spots where BA is highly predictable by teleconnection climate modes (TCMs). (a) Spatial 
pattern of the mean annual BA fraction in each 1° grid cell over 2003–2024. (b) Spatial pattern of fire season peak. The fire season peak was defined 
as the three consecutive months with the highest accumulated BA. The capital letters in the legend are the combination of the initial letters of the 
three consecutive months. (c) Hot/cold spots where TCMs show higher/lower BA predictability. They are clusters of grid cells that show higher/lower 
local BA predictability than the global grid cells. The p-values indicate whether the difference between local clusters and global grid cells is statisti-
cally significant. Hot/cold spots are labeled as Hot/Cold with p-values in the legend. The black ellipses mark hot spots with a significance level of 0.01, 
including northwestern North America, northeastern North America, northern Mexico, northeastern South America, the Horn of Africa, northern 
Middle East, western Siberia, eastern Siberia, Southeast Asia, and Australia. The gray regions (not significant, NS, p > 0.1) are neither hot spots nor 
cold spots. (d) The distribution of R2 between predicted and observed BA in each hot spot. The boxplot shows the minimum, first quartile, median 
(red lines), mean (green triangles), third quartile, and maximum. The violin plot shows the probability density of R2. The hot spots were ranked based 
on the proportion of their area relative to the total global burnable area (values shown in parentheses).
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7 of 16

three most important TCMs (i.e., IOD and TNA) exhibited 
dominant mediating effects of fuels, particularly TNA. In the 
Horn of Africa, the mediating effects of fuels overall exceeded 
those of weather. Two of the three most important TCMs (i.e., 

NAO and TSA) were primarily associated with fuels medi-
ating pathways, while only TNA showed weather-dominant 
mediating effects. In the northern Middle East, the domi-
nant mediating effects of fuels were even more pronounced. 

FIGURE 2    |    Importance of teleconnection climate modes (TCMs) in predicting burned area (BA). (a) Importance of TCMs according to the affect-
ed area fraction. The fraction was derived by dividing the number of grid cells in which BA is significantly predictable (F-statistic, p < 0.05) by the 
total number of burnable grid cells globally. The label ‘Any’ indicates BA is predictable by any single TCM. The TCMs were ranked by their affected 
area fraction. (b) Importance of TCMs according to the global mean BA predictability. In each grid cell, the BA predictability of an individual TCM 
was expressed as the R2 between predicted and observed BA. Only the grid cells where BA is significantly predictable were taken into account. The 
error bars show the standard deviations. The TCMs were ranked by their global mean BA predictability. (c) Importance of TCMs in hot spots ac-
cording to their affected area fraction. Arctic Oscillation (AO), Polar/Eurasia pattern (POL), North Atlantic Oscillation (NAO), East Atlantic/West 
Russia Pattern (EAWR), Tropical North Atlantic pattern (TNA), Tropical South Atlantic pattern (TSA), Indian Ocean Dipole (IOD), El Niño Southern 
Oscillation (ENSO), Pacific–North American pattern (PNA), Western Pacific pattern (WP), Antarctic Oscillation (AAO).
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8 of 16 Global Change Biology, 2025

All three of the most important TCMs (i.e., TNA, IOD, and 
NAO) propagated their influence to BA primarily through 
fuel-related pathways. In these dryland hot spots, the time 
lags between BA and fuel mediators are shorter than those of 
weather mediators (Figure S11). This suggests that TCMs may 
first influence weather conditions, which in turn affect fuels, 
thereby transmitting the impact of TCMs to BA. Nevertheless, 
fuels appear to serve as more effective mediators between 
TCMs and BA.

In northeastern South America and Southeast Asia, which are 
characterized by dense vegetation as indicated by higher EVI 
values, the overall mediating effects of weather exceeded those 
of fuels, particularly in Southeast Asia. In northeastern South 
America, the dominant mediating effects of weather were espe-
cially evident for the top two most important TCMs (i.e., ENSO 
and TNA). In Southeast Asia, all three of the most important 
TCMs (i.e., ENSO, IOD, and WP) exhibited dominant mediating 
effects of weather, with ENSO showing the strongest evidence. 
In these weather-mediated hot spots, the time lags between 

weather mediators and BA were generally shorter than those 
in fuel-mediated hot spots, indicating a more immediate influ-
ence of weather (Figure S11). However, in some cases, weather 
exhibited longer time lags than fuels (e.g., the lower quartile of 
weather was higher than that of fuels in northeastern South 
America), suggesting that the influence of weather on BA may 
still be transmitted through fuels, even when fuels are not the 
primary mediators.

In northeastern North America and northern Mexico, the medi-
ating effects of weather outweighed those of fuels, particularly 
for TNA and WP in northeastern North America and for NAO 
in northern Mexico. In other regions, although the mediating 
effects of fuels did not exhibit strong overall dominance, fuels 
still acted as the primary mediators through which certain 
TCMs influenced BA. For instance, in eastern Siberia, the influ-
ence of TNA on BA was primarily transmitted via fuel-related 
mechanisms. In western Siberia, the dominant mediating ef-
fects of fuels were evident. In northwestern North America, the 
overall mediating effects of fuels marginally exceeded those of 

FIGURE 3    |    Burned area (BA) predictability in hot spots driven by teleconnection climate modes (TCMs). (a) Predictable area fraction driven by 
the first (1st), second (2nd), and third (3rd) dominant TCM, as well as all three TCMs (1st + 2nd + 3rd). BA was considered statistically predictable 
when the F-statistic indicated significance at the 0.05 level. The dominance of TCM (1st, 2nd, or 3rd) in each hot spot was assessed according to the 
fraction of the area affected by that TCM within the region, as shown in Figure 2c. (b) BA predictability driven by the first (1st), second (2nd), and 
third (3rd) dominant TCM, as well as all three TCMs (1st + 2nd + 3rd). The BA predictability was expressed as the R2 between predicted and observed 
BA. Only the grid cells where BA is statistically predictable were taken into account.
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9 of 16

weather. Notably, TNA, which was the second most important 
TCM in this region, transmitted its influence on BA predomi-
nantly through fuels.

To avoid intercorrelations within each group, we also com-
pared the maximum contribution from each group. A consis-
tent pattern was observed; see the green or brown component 
with the highest proportion in Figure  5a. In Australia, al-
though the mediating effects of VPD were dominant overall, 
all three of the most important TCMs exhibited fuel-dominant 
pathways (FPAR for IOD, NDVI for TNA, and SM for NAO). 
In the Horn of Africa, SM showed dominant overall mediating 

effects. Two of the most important TCMs also showed SM 
dominance (particularly TSA), except for TNA, which was 
wind-dominant. The dominance of fuels was even more pro-
nounced in the northern Middle East, where NDVI or EVI 
were the main mediating pathways. In the densely vegetated 
regions like northeastern South America and Southeast Asia, 
weather-mediated effects dominated those of fuels. In north-
eastern South America, while TSA exhibited SM-dominant 
pathways, ENSO and TNA were primarily mediated through 
VPD. In Southeast Asia, ENSO and the WP primarily influ-
enced wildfires through VPD, whereas IOD exerted its effects 
mainly via FPAR. In northern Mexico, the mediating effects 

FIGURE 4    |    Time lags of teleconnection climate modes (TCMs). The correlation coefficients between TCMs and burned area (BA) were used to 
detect time lags and determine whether correlations were positive or negative. In each hot spot, the time lag distributions were calculated by sum-
ming all the absolute values of the correlation coefficients between TCMs with the same time lag (0–24 months) and BA from all grid cells within 
the hot spot. Only the grid cells where the correlations were significant (p < 0.05) were used in the summing process. For the comparison between 
different TCMs and hot spots, the time lag distributions were normalized to 0–1. The positive/negative fraction in each bar is calculated by dividing 
the sum of the absolute values of positive/negative correlation coefficients by the sum of the absolute values of all correlation coefficients. In each hot 
spot, only the first dominant (1st), second dominant (2nd), and third dominant (3rd) TCMs are shown according to Figure 2c.
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10 of 16 Global Change Biology, 2025

of fuels were weaker than those of weather, particularly VPD. 
In eastern Siberia, FPAR emerged as the dominant mediator 
for all three top TCMs (i.e., TNA, TSA, and IOD). In western 

Siberia, the influence of ENSO on BA was primarily mediated 
through EVI. In northwestern North America, FPAR medi-
ated the influence of TNA on BA.

FIGURE 5    |    Mediators between teleconnection climate modes (TCMs) and burned area (BA). (a) Fractions of pathway contributions of a TCM on 
BA through mediators. The fractions for each hot spot and TCM were calculated by dividing the sum pathway contribution through each mediator by 
the total pathway contribution through all mediators. The mediator with the highest contribution fraction was labeled in the center. In each hot spot, 
the fractions from the first dominant (1st), second dominant (2nd), and third dominant (3rd) TCM, as well as all TCMs (All), are shown according 
to Figure 2c. (b) The regional mean vapor pressure deficit (VPD) and enhanced vegetation index (EVI) of the hot spot, indicating weather and fuel 
conditions, respectively. The nodes show the average values, and the error bars show the standard deviations.
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In addition to hot spot-level analysis, we also examined the 
dominance of mediators at the grid cell scale, comparing both 
group sum contribution (Figure  S12) and group maximum 
contribution (Figure  S13). Both results revealed consistent 
patterns, with weather mediators dominating in densely vege-
tated hot spots and fuel mediators dominating in dryland hot 
spots, highlighting the robustness of this pattern. We also ex-
amined the mediators between TCMs and FRP (Figure S14). 
In dryland hot spots such as the northern Middle East, the 
Horn of Africa, and South Africa, fuel-related mediating ef-
fects generally exceeded those of weather, with the Horn of 
Africa and South Africa showing overall dominance of fuel-
mediated pathways. In Southeast Asia, while the overall 
mediating effect of Tmax was dominant, TNA and ENSO 
exhibited mediation pathways primarily driven by fuels. In 
eastern and western Siberia, as well as northwestern North 
America, fuels continued to serve as key mediators between 
TCMs and FRP, for example, SM for NAO in eastern Siberia, 
and NDVI and EVI for TNA in western Siberia and northwest-
ern North America.

4   |   Discussion

This study addressed three main questions: (a) where are the 
hot spots in which wildfires are highly predictable by TCMs? 
(b) how do TCMs influence global and regional wildfires? (c) 
what are the dominant mediators between TCMs and wild-
fires, weather or fuels? The wildfire behavior metrics used 
were BA and FRP. Considering the patterns obtained from 
BA-based and FRP-based analyses are largely consistent, here 
we only focus on the BA-based analysis. We determined 10 
hot spots, including northwestern North America, northeast-
ern North America, northern Mexico, northeastern South 
America, the Horn of Africa, northern Middle East, western 
Siberia, eastern Siberia, Southeast Asia, and Australia. Among 
the 11 TCMs analyzed, TNA, TSA, ENSO, and IOD, which 
represent the tropical Atlantic, tropical Pacific, and tropical 
Indian Ocean, were identified as the most influential ones. 
These TCMs modulate global and regional BA through their 
interactions and associated impacts on atmospheric and oce-
anic circulations. We found that fuel mediators played a dom-
inant role over weather mediators in dryland hot spots such as 
Australia, the Horn of Africa, and the northern Middle East. 
In contrast, in more densely vegetated hot spots like north-
eastern South America and Southeast Asia, weather media-
tors generally exerted stronger mediating effects than fuel 
mediators. In hot spots such as western and eastern Siberia 
and northwestern North America, fuel mediators could still 
outweigh weather mediators in modulating the influence of 
certain TCMs on wildfires.

4.1   |   Climate Teleconnection–Wildfire 
Mechanisms

The dominance of tropical climate teleconnections in mod-
ulating global BA is corroborated by studies showing that 
the tropical Atlantic, tropical Pacific, and tropical Indian 
Ocean interact with each other primarily through the Walker 
and Hadley circulations (Liu et  al.  2023; Meehl et  al.  2020), 

with their interactions further modulated by the NAO (Ding 
et al. 2023; Yang et al. 2021). The ENSO dominance in west-
ern Siberia and northwestern North America can be explained 
by the fact that the tropical Pacific impacts high latitudes via 
the interactions with the tropical Indian Ocean, the tropical 
Atlantic, and the North Pacific (Hu and Fedorov  2019; Liao 
and Wang  2021). The dominance of ENSO in northeast-
ern South America and Southeast Asia has been well stud-
ied (Cardil et  al.  2023; Chen, Morton, et  al.  2016). In these 
regions, the time lags between ENSO and BA are typically 
short (0–8 months), with VPD playing a dominant mediat-
ing role (Figures  4 and 5). This suggests that wildfires re-
spond relatively quickly to ENSO events primarily through 
weather-related pathways. In these regions where fuels are 
abundant while fire-conducive weather is limited, decreased 
precipitation and increased evapotranspiration in El Niño 
years increase the likelihood of large fires, which is evident 
by the positive correlations between ENSO and BA. Different 
from northeastern South America and Southeast Asia, the 
correlation between ENSO and BA in Australia is negative 
(Figure S8). The long time lags and negative correlations sug-
gest that ENSO influences fuel accumulation, as reflected by 
the dominant mediating role of EVI. During El Niño events, 
reduced precipitation limits SM and hence fuels in Australian 
savannas, where wildfires are primarily fuel-limited (Le and 
Bae 2022; Qu et al. 2023).

The dominance of IOD is shown in Australia, western Siberia, 
northeastern North America, Southeast Asia, northern Mexico, 
and the northern Middle East. The positive phase of IOD results 
in reduced precipitation and increased evapotranspiration in 
these regions, thereby increasing wildfire risk, which is sup-
ported by the positive correlations and short time lags between 
IOD and BA. The influence of IOD on BA in the northern mid- 
to high latitudes can be attributed to two distinct teleconnec-
tion pathways, which resemble those of ENSO, as IOD and 
ENSO have a robust causal relationship (Hardiman et al. 2020; 
Le and Bae 2019). The first is a tropospheric pathway, in which 
anomalies originating from the Indian Ocean propagate to the 
North Atlantic via a Rossby wave train that passes over the 
Pacific and Atlantic (Hardiman et  al.  2020). The second is a 
stratospheric pathway, whereby the Rossby wave train from 
the Indian Ocean weakens the Aleutian cyclone over the North 
Pacific, altering planetary wave patterns and strengthening 
the stratospheric polar vortex, ultimately favoring the develop-
ment of a positive NAO (Hardiman et al. 2020). In the north-
ern Middle East, the IOD is positively correlated with BA, with 
short time lags (approximately 0 and 7 months), likely reflect-
ing its influence on fuel buildup, as indicated by the dominant 
mediating role of NDVI. In northeastern South America, the 
positive correlation between IOD and BA is mainly mediated 
by SM (Figures S8 and S10), likely due to the connection be-
tween IOD and ENSO and the impacts of ENSO on regional SM 
(Le and Bae 2019, 2022).

Some TCMs, like TNA, TSA, and NAO, are pivotal in prop-
agating signals from tropical ocean anomalies across vast 
distances and timescales. The tropical Atlantic dominance 
is evident in all hot spots except for Southeast Asia. El Niño 
events heat both the tropical Indian Ocean and tropical 
Atlantic, with the warming pattern persisting longer over the 
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12 of 16 Global Change Biology, 2025

tropical Atlantic (Matsumura and Kosaka 2019). The Rossby 
wave from the tropical Atlantic reaches Eurasia through the 
North Atlantic, thereby warming the high latitudes of the 
Northern Hemisphere (Fuentes-Franco et al. 2022). The trop-
ical Atlantic also exerts a strong influence on wildfires in the 
Horn of Africa, the northern Middle East, northern Mexico, 
and northeastern South America. The warm and cold SST 
anomalies over the tropical Atlantic force the north–south 
shift of the Intertropical Convergence Zone (ITCZ), resulting 
in precipitation anomalies in these regions surrounding the 
tropical Atlantic (Chen et al. 2011). The propagating effect of 
TNA and TSA, along with their influence on ITCZ, may ex-
plain the dominance of TNA and TSA in global BA, particu-
larly in western and eastern Siberia (Figure  S3). This global 
dominance of tropical Atlantic TCMs is also supported by a 
previous study (Cardil et al. 2023).

The importance of NAO in modulating global wildfires is 
consistent with the expectation that the NAO can modulate 
the coupling between the tropical oceans by altering the path 
and strength of midlatitude atmospheric circulations, such 
as the jet stream and Rossby waves (Ding et  al.  2023; Yang 
et al. 2021) as well as oceanic circulation (Bellucci et al. 2008). 
When the NAO is in its positive phase, the strengthening of 
winds over the North Atlantic alters the Walker circulation, 
which in turn regulates the interactions between the tropical 
ocean systems (Ding et  al.  2023). These cross-regional cou-
plings may explain the influence of NAO over hot spots that 
are adjacent to tropical oceans, such as Australia, the Horn 
of Africa, and northern Mexico. In the northern Middle East, 
NAO and BA are negatively correlated in a dominant time lag 
of around 9 months (Figure 4). This aligns with the expecta-
tion that the negative phase of NAO lowers the pressure gra-
dient between Icelandic Low and Azores High, resulting in 
weaker westerlies, thus conducive to the transport of vapor to 
the areas surrounding the Mediterranean (Wang et al. 2014) 
and therefore fuel accumulation, which is evident by the dom-
inant mediating effects of EVI. NAO also plays an important 
role in eastern Siberia, ranked as the fourth most important 
TCM there (Figure 2c). The positive phase of NAO in winter 
favors the vapor input from the North Pacific in spring, while 
the accompanying Arctic sea ice loss prevents vapor transport 
from Siberia to the Laptev Sea and thus decreases summer 
precipitation (Zhu et al. 2021). This may explain the negative 
correlations in eastern Siberia between NAO and BA around 
the time lag of 19 months and positive correlations around the 
time lag of 23 months (Figure S8). The longer time lags (more 
than 1 year) in eastern Siberia agree with the expectation of 
long moisture memory and carry-over effect (the growth of 
vegetation is influenced by its previous states) of forests (Lian 
et al. 2021).

4.2   |   Fuels Mediating Climate Teleconnection–
Wildfire

Fuel buildup and continuity are related to weather condi-
tions and land cover changes like cropland expansion in 
sub-Saharan Africa (Andela and van der Werf  2014) and 
flammable species invasion in eastern Siberia (McCarty 
et al. 2020). This suggests that in regions where the mediating 

effects of fuels are dominant, weather mediators continue 
to act as indirect controls, with their effects transmitted by 
fuels. In other words, weather mediators influence wildfires 
through both immediate and delayed effects. The immediate 
effects reflect direct wildfire responses to weather variability 
driven by TCMs, while the delayed effects represent lagged 
wildfire responses.

In more densely vegetated hot spots such as northeastern South 
America and Southeast Asia, weather mediators generally ex-
erted stronger mediating effects on wildfires than fuel media-
tors (Figure 5). In these hot spots, the time lags between weather 
mediators and wildfires were typically shorter than those of fuel 
mediators, indicating more immediate effects of weather me-
diators (Figure S11). However, in some cases, the time lags for 
weather mediators exceeded those of fuel mediators, suggesting 
more delayed effects; in other words, the influence of weather 
may have been indirectly transmitted through fuel mediators. 
Nonetheless, fuel mediators alone are insufficient to mediate the 
influence of TCMs on wildfires in these regions and thus do not 
serve as the primary mediating pathway.

The delayed influence of weather mediators on wildfires is evi-
dent in dryland hot spots such as Australia, the Horn of Africa, 
and the northern Middle East, where fuel-related mediators 
play a key role in mediating the influence of TCMs on wildfires 
(Figure 5). By analyzing time lags, we found that in these re-
gions, fuel variability and its delayed effects on wildfires were 
largely driven by weather variability that was induced by TCMs. 
This is supported by the finding that time lags associated with 
fuel mediators were generally shorter than those associated with 
weather variables (Figure  S11). This does not imply that the 
dominant mediating effects of fuels are spurious. Rather, this 
suggests that fuel mediators serve as effective proxies for vegeta-
tion dryness or biomass, capturing the lagged effects of weather 
mediators on wildfires. In addition to dryland hot spots, fuel 
mediators also played a dominant mediating role for all three 
most important TCMs in eastern Siberia. In other hot spots like 
western Siberia and northwestern North America, fuel media-
tors could still act as a primary pathway through which certain 
TCMs modulate wildfires.

Previous studies that investigated the influences of TCMs on 
wildfires regionally or globally did not provide a comprehensive 
analysis of the underlying pathways, or only focused on the im-
mediate effects of weather mediators. The omission of fuel me-
diators may lead to either an overestimation or underestimation 
of the influence of TCMs. In eastern Siberia, for example, FPAR 
is the primary mediator linking TNA, TSA, and IOD with BA. 
Quantifying the influence of TCMs on BA through widely used 
weather mediators (e.g., Tmax and VPD) may incorrectly attri-
bute the effect of anthropogenic warming to that of TCMs and 
thus overestimate it. This case of overestimation may be solved 
by considering fuel mediators within the wildfire attribution 
framework. In the drylands of Australia, after a 3-year La Niña 
(2020–23), the fuel load was increased due to the increased pre-
cipitation (AFAC 2023). Following the onset of El Niño in 2023, 
drought conditions emerged and dried up fuels. This combina-
tion of increased fuel load and dryness may have potentially 
increased the risk of extreme wildfires (Zhang 2023). However, 
if only El Niño-induced droughts or heatwaves are considered, 
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studies may underestimate the fire risk as the increased fuels 
stemming from the preceding La Niña are overlooked. Such 
underestimation can be mitigated by accurately identifying the 
time lags, the sign of the relationships (positive or negative), and 
the mediators between ENSO and BA.

4.3   |   Implications, Limitations, and Future 
Directions

Anthropogenic warming may increase the magnitude of 
ENSO, and therefore TNA and PNA, due to their interactions 
(Cai et al. 2023, 2022). The strengthened El Niño event may 
be followed by a multi-year La Niña because of the large heat 
budget (Cai et al. 2023; Geng et al. 2023). The transition from 
a 3-year La Niña (2020–2022) to a strong El Niño (2023) com-
bined with anthropogenic warming made 2023 the warm-
est year on record (Raghuraman et  al.  2024). The combined 
effects of anthropogenic warming and intensified climate 
teleconnection patterns may exacerbate wildfire conditions, 
posing increasing challenges to current fuel management 
strategies and wildfire mitigation policies. We proposed a new 
climate teleconnection–wildfire framework that systemati-
cally integrates the spatial, temporal, and mechanistic aspects 
of their relationship. By addressing these three aspects, the 
framework offers a more comprehensive understanding of 
how large-scale TCMs influence wildfire behaviors across dif-
ferent regions and timescales.

Ten hot spots where TCMs show higher-than-average BA pre-
dictability were determined, including northwestern North 
America, northeastern North America, northern Mexico, 
northeastern South America, the Horn of Africa, northern 
Middle East, western Siberia, eastern Siberia, Southeast Asia, 
and Australia. Several cold spots where TCMs show lower-
than-average BA predictability were also determined, includ-
ing the Central United States, the southern equatorial region 
of sub-Saharan Africa, northern and southeastern China, and 
northwestern Indochina. These hot (cold) spots indicate regions 
where wildfires are (are not) modulated by TCMs, suggesting 
that attribution and prediction based on TCMs may be effective 
(ineffective) in these areas.

As successive strong climate teleconnection events are projected 
to become more frequent in the future (Geng et al. 2023), accu-
rately accounting for time lags becomes increasingly important. 
Failing to distinguish the influence between successive climate 
teleconnection events can conflate their individual impacts and 
compromise the reliability of wildfire predictions. Our frame-
work can effectively disentangle these successive or overlapping 
effects by identifying time lags, a critical step toward improving 
the accuracy of wildfire attribution and prediction.

Accurately identifying teleconnection mechanisms enables early 
warning systems that can inform governments and the public, al-
lowing interventions to mitigate the impacts of extreme wildfires. 
Through a pathway analysis, we quantified, for the first time, the 
mediating effects of weather and fuels, highlighting the critical 
role of fuel mediators in transmitting the influence of TCMs to 
wildfires, especially in dryland hot spots like Australia, the Horn 
of Africa, and the northern Middle East. Our findings underscore 

that neglecting the mediating effects of fuels can result in signif-
icant overestimation or underestimation of the impacts of TCMs 
on wildfires. This stresses the need to refine fuel management 
strategies and integrate fuel conditions into teleconnection-
related wildfire attribution and prediction efforts.

In the future, the following investigations could further narrow 
the uncertainties and limitations of this study. First, we classi-
fied mediators into weather- and fuel-related, but ignitions from 
human behavior and lightning are also important for wildfires 
(Janssen et al. 2023; Mariani et al. 2018) and may not be repre-
sented adequately by the mediators used. Second, the location 
and timing of a TCM event are important. In certain circum-
stances, the central position of SST anomalies is more related 
to wildfires than their intensity. For example, wildfires in 
Indonesia tend to be larger during Eastern Pacific El Niño and 
smaller during Central Pacific El Niño (Chen, Lin, et al. 2016). 
Third, a longer BA time series would be beneficial in minimiz-
ing the impact of extreme TCM events. Last, as anthropogenic 
warming continues, the impacts of TCMs may be amplified 
and reach potential tipping points (Duque-Villegas et al. 2019), 
which should be considered.

5   |   Conclusion

This study determined 10 hot spots where BA was highly pre-
dictable by TCMs. Hot spots with the highest probability were 
Australia and eastern Siberia. Globally, BA in approximately 
25.4% of burnable regions was predictable by a single TCM. 
Climate teleconnections originating from the tropical Atlantic, 
tropical Pacific, and tropical Indian Ocean played the most sig-
nificant roles in modulating global BA. These tropical oceans 
interact with each other and influence wildfires globally via 
atmospheric and oceanic circulations. TNA and TSA propagate 
anomalies from the tropical Atlantic to the high latitudes of the 
Northern Hemisphere, particularly affecting western and east-
ern Siberia. Combined with their influence on the north–south 
shifts of ITCZ, they emerged as the most influential TCMs. In 
dryland hot spots like Australia, the Horn of Africa, and the 
northern Middle East, the mediating effects of fuels dominate 
those of weather. In more densely vegetated hot spots like north-
eastern South America and Southeast Asia, the mediating ef-
fects of weather generally exceeded the effects of fuels. In other 
hot spots, the fuel mediators could still act as a primary path-
way through which certain TCMs modulate wildfires. To the 
best of our knowledge, this was the first attempt to comprehen-
sively analyze the global climate teleconnection–wildfire path-
ways, considering both weather and fuel mediators. Our study 
highlights the important role fuel mediators play in connecting 
TCMs and BA, especially in dryland hot spots. It provides new 
insights into developing refined fuel management strategies and 
wildfire attribution and prediction frameworks, which are cru-
cial in the context of climate change and the resulting changes 
in teleconnection patterns.
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